Intermediate Silicon Tracker Overview

RIKEN/RBRC
Itaru Nakagawa

Quick Overview of Intermediate Silicon Tracker (INTT)

	R [cm]	# of Ladders
	2.3	
MAPS	3.1	
	3.9	
	6	18
INITT	8	24
INTT	10	30
	12	36
TPC	30 ~ 80	

Total Number of Ladders=108

Total $10 \times 2 = 20$ cells/ladder

HDI

Project Scope (Role of INTT)

1. DCA measurements

- Connect MAPS tracklets and TPC track
- Reduce backgrounds in DCA

2. Pile-up

Improve track finding efficiency in central Au-Au

3. TPC Calibration

Identify track position for the space-time calibration of TPC

Boundary condition:

- Material budgets to be as smallest as possible.
- Minimum technical risk to be in time for day-1.

Technology Choice

Challenge to develop thinner detector to reduce material budgets. Standard 320µm -> 200µm?

FPHX Chip

FVTX Silicon Module for PHENIX

- Developed for FVTX and proven to work well
- Low power consumption

FPHX Power Consumption

Specification	FPHX
ADC/channel	3 bits
Power Consumption	64 mW
Cooling	Air or Solid*

Panasonic

"PGS" Graphite Sheets

"PGS" Graphite Sheets

Type: **EYG**

"PGS (Pyrolytic Graphite Sheet)" is a thermal interface material which is very thin, synthetically made, has high thermal conductivity, and is made from a higly oriented graphite polymer film. It is ideal for providing thermal management/heat-sinking in limited spaces or to provide supplemental

Features

Excellent thermal conductivity: 700 to 1950 W/(m·K)
 (2 to 5 times as high as copper, 3 to 8 time as high as aluminum)

Material Budget of PHENIX VTX

Current VTX Stripixel Stave	
Carbon Face Sheet	0.43%
Al Tube (square 0.014" walls)	0.45%
Novec	0.39%
Carbon Foam	0.20%
Total	1.47%

VTX Stave w/ Stainless steel & Carbon Foam

Carbon Face Sheet	0.43%
Stainless Steel Tube (3/16" ID .007" walls)	0.40%
Novec	0.39%
Carbon Foam	0.20%
Total	1.42%

VTX Stave w/ Carbon-loaded PEEK

Carbon Face Sheet	0.43%
Novec (Same volume as current stave)	0.39%
Carbon Loaded PEEK (L_rad=28 cm)	1.04%
Total	1.86%

X _{rad} [μm]	X_{rad}/X_0 [%]
100 - 500	0.05 - 0.25

Technical Challenge

800.0

700.0

- Thinner Silicon Sensor
 - Trade off of S/N ratio
- Air/Solid Coolings

Dark Current [uA]

→320 um →240 um

Adaption of FVTX Electronics to INTT.

FVTX Detector

Trapezoid

Rectangular

FVTX System

INTT System

INTT System

Collaborating Institutes and Expertise

- RIKEN (Y. Akiba, I. Nakagawa)
 - Conducted the PIXEL detector for PHENIX. In charge of design work and procurements of silicon sensors and HDIs with Japanese companies.
- RBRC (T. Hachiya, G. Mitsuka, Y. Yamaguchi)
 - Assembly and testing silicon module. Physics simulation and configuration optimization. Adapt FVTX readout electronics.
- BNL (J. Huang, M. Lenz, E. Mannel, R. Nouicer, R. Pisani)
 - Engineering and assembly of the ladder and support structures.
- Rikkyo (H. Masuda)
 - FPGA coding in readout electronics and slow controls and testing prototypes.

14

- Nara Woman's University (M. Shimomura)
 - Testing prototypes and productions.
- LANL (M. Brooks, M. Liu)
 - Played leading role in FVTX detector development. Consultant for the application of FVTX electronics to INTT.
- J-Parc (S. Hasegawa, H. Sako)
 - Additional funding and co-development of silicon sensors.

*FVTX expert

R&D Schedule JFY2016

2016 Month	4	5	6	7	8	9	10	11	12	1	2	3	4	Resource	Design
s1 Prototype-I															Production
Silicon Sensor														RIKEN	Test
HDI														RIKEN	
Silicon Module														RBRC	
s0 Prototype-I															
Silicon Sensor														RIKEN	
HDI														RIKEN	
Silicon Module														RBRC	

Today

Summary

- Intermediate tracker to improving the tracking performance in high multiplicity circumstance
- Similar design to PHENIX FVTX detector.
- Minimum technical challenge to be in time for day-1 experiment.
- Maximum use of existing FVTX readouts to reduce the cost.

BACKUP SLIDES

s0 Sensor Design

Silicon Cell

Number of Strips	128
Strip width	84 um
Strip length	12 mm

Block Width	128 × 84 um = 10.752 mm					
Block Length	12 mmm					

Silicon Sensor

Number of Blocks	12 × 2 =24				
Active Are	(2 × 10.752) mm × (12 × 10) mm				

Managements

- Project manager (Itaru Nakagawa)
- deputy manager (Rachid Nouicer)
- Subsystem managers
 - Detector assembly and construction (Rachid Nouicer)
 - Mechanical and integration (Rob Pisani)
 - Electronics and readouts (Eric Mannel and Takashi Hachiya)
 - Software (Gaku Mitsuka)
 - LV + HV and Slow control (Yorito Yamaguchi)

Outline

- Role of the intermediate tracker (INTT)
- INTT concept
 - Configuration
 - Technology
 - Cost

Technological Choice

Collaboration

- RIKEN (Y. Akiba, I. Nakagawa)
- RBRC (T. Hachiya, G. Mitsuka, Y. Yamaguchi)
- BNL (J. Huang, M. Lenz, E. Mannel, R. Nouicer, R. Pisani)
- Rikkyo (H. Masuda, Kazu Kurita?)
- Nara woman's university (M. Shimomura)
- LANL (M. Brooks, M. Liu)
- New Mexico (D. Field*)
- J-Parc (S. Hasegawa, H. Sako)
- Tsukuba (S. Esumi)

^{*}FVTX expert

Basic Project Philosophy

Basic Design Philosophy

Technology

- Employ existing technology
- Employ technology we are familiar with

Man Power

• Collaborate with Institutes which have the experience and infrastructure

Minimum Cost

- Little "R" and rather focus on "D"
- As compact as possible

Schedule

To be in time for 2022.